Contents Menu Expand Light mode Dark mode Auto light/dark mode
ARMED documentation
ARMED documentation

Contents:

  • Setup
  • API Reference
    • armed
      • armed.callbacks
        • armed.callbacks.aec_callbacks
        • armed.callbacks.segmentation
      • armed.crossvalidation
        • armed.crossvalidation.grouped_cv
        • armed.crossvalidation.splitting
      • armed.metrics
      • armed.misc
      • armed.models
        • armed.models.autoencoder_classifier
        • armed.models.cnn_classifier
        • armed.models.lme
        • armed.models.metalearning
        • armed.models.mlp_classifiers
        • armed.models.random_effects
      • armed.settings
      • armed.tfutils
  • Applications
    • Synthetic datasets
    • Classification of stable vs. progressive mild cognitive impairment (MCI)
    • Alzheimer’s Disease diagnosis from T1-weighted MRI
    • Live cell image compression and classification
  • License
Back to top

armed.models.mlp_classifiers#

Simple neural networks for classification

Classes

Adversary(*args, **kwargs)

BaseMLP(*args, **kwargs)

ClusterCovariateMLP(*args, **kwargs)

Basic MLP that concatenates the site membership design matrix to the data.

DomainAdversarialMLP(*args, **kwargs)

MLPActivations(*args, **kwargs)

MixedEffectsMLP(*args, **kwargs)

MixedEffectsMLPNonlinearSlope(*args, **kwargs)

RandomEffectsLinearSlopeIntercept(*args, ...)

Next
armed.models.random_effects
Previous
armed.models.metalearning
Copyright © 2023, Kevin P Nguyen, Alex Treacher, Albert Montillo
Made with Sphinx and @pradyunsg's Furo