armed.callbacks package#
Submodules#
armed.callbacks.aec_callbacks module#
Custom callbacks for autoencoder-classifiers.
- armed.callbacks.aec_callbacks.compute_image_metrics(epoch: int, model, data_in, metadata: pandas.DataFrame, output_dir: str, output_idx: int = 0)#
Compute image metrics including brightness, contrast, sharpness, and SNR. Also create histograms comparing distributions of these metrics across clusters.
- Parameters:
epoch (int) – epoch number
model (tf.keras.Model) – model
data_in (np.array or tuple of arrays) – input data
metadata (pd.DataFrame) – image metadata
output_dir (str) – path to output location
output_idx (int, optional) – Index of model outputs containing the image outputs. Defaults to 0.
- Returns:
[description]
- Return type:
[type]
- armed.callbacks.aec_callbacks.make_compute_latents_callback(model, images: numpy.array, image_metadata: pandas.DataFrame, output_dir: str)#
Generate a callback function that calls the encoder on some images to create latent representations, then saves them to a .pkl file. The function also computes the Davies-Bouldin and Calinski-Harabasz clustering metrics on the latents and logs the results to a file. The generated function should be used with the LambdaCallback class from Keras to create the callback object.
- Parameters:
model (tf.keras.Model) – encoder model
images (np.array) – batch of 8 images (8 x h x w x 1)
image_metadata (pd.DataFrame) – metadata table
output_dir (str) – output path
- armed.callbacks.aec_callbacks.make_image_metrics_callback(model, data_in, metadata, output_dir, output_idx=0)#
Generate a callback function that computes image metrics including brightness, contrast, sharpness, and SNR. The generated function should be used with the LambdaCallback class from Keras to create the callback object.
- Parameters:
model (tf.keras.Model) – model
data_in (np.array or tuple of arrays) – input data
metadata (pd.DataFrame) – image metadata
output_dir (str) – path to output location
output_idx (int, optional) – Index of model outputs containing the image outputs. Defaults to 0.
- armed.callbacks.aec_callbacks.make_recon_figure_callback(images: numpy.array, model, output_dir: str, clusters: numpy.array | None = None, mixedeffects: bool = False)#
Generate a callback function that produces a figure with example reconstructions. The figure optionally includes the reconstructions with and without cluster-specific effects. The generated function should be used with the LambdaCallback class from Keras to create the callback object.
- Parameters:
images (np.array) – batch of 8 images (8 x h x w x 1)
model (tf.keras.Model) – model
output_dir (str) – output path
clusters (np.array) – one-hot encoded cluster design matrix if needed by model (8 x n_clusters). Defaults to None
mixedeffects (bool) – include recons w/ and w/o random effects
armed.callbacks.segmentation module#
Custom Keras callbacks for segmentation models (currently unused)
Module contents#
Custom callbacks